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Abstract
A closed SO(5) algebraic structure in the pure p-wave superconductivity is
found. It can help to diagonalize the the mean-field form of the Hamiltonian
by making use of the Bogoliubov rotation instead of the Balian–Werthamer
approach. We point out that the eigenstate is nothing but an SO(5)-coherent
state with fermionic realization. By applying the approach to the Hamiltonian
with Leggett dipole interaction the consistency between the diagonalization
and gap equation is proved through the double-time Green function. The
relationship between the s- and p-wave superconductivities turns out to be
realized through Yangian algebra, a new type of infinite-dimensional algebra.

PACS numbers: 03.65.-w, 03.65.Fd, 74.20.Fg, 74.20.-z

The p-wave superconductivitiy theories and their applications to liquid 3He have intensively
been studied in many early publications, for example, in [1–5]. As was pointed out by
Anderson and Brinkman [1] the Balian–Werthamer (BW) formalism [6] underlies all the
following models in the field. The Hamiltonian takes the Anderson reduced form H = H0 +V

H0 =
∑
k,α

εknkα V = 1
2

∑
k,k′α,β

Vkk′a+
k′αa+

−k′βa−kβakα (1)

where εk = k2

2m
− µ, α, β =↑, ↓, and for the p-wave Vkk′ = −3V1(k, k′)n · n′ (

n = k
k

)
.

To explain the p-pair interaction Leggett [2] introduced a useful algebra, which is not closed.
Meanwhile, a dipole type of interaction was proposed that naturally distinguishes the energy
difference for the ABM and BW phases [2–4] and gives the correct spin dynamics. All
the theories appear to work perfectly, but with growing interest in the applications of the
current algebraic method it is still desirable to gain greater understanding. In this paper
we would like to show the following results. (a) The sets obeying Si(k) = a+

kα(σi)αβakβ
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and Ti(k) = a−kα(σ2σi)αβakβ as well as their conjugates [2] form an SO(5) algebra
(i = 0, 1, 2, 3, σ0 = 1 and summation over the repeat α and β) that is larger than the
usual U(1) ⊗ SU(L) ⊗ SU(S) as shown in [3]. Equipped with the algebraic structure for
the lower pair excitation we then diagonalize the Hamiltonian equation (1) that together
with the invariance U(1) ⊗ SU(L) ⊗ SU(S) by using the algebraic average method (AAM,
general Bogoliubov rotation) yield all the known results. (b) We show that the eigenfunction
of equation (1) is an SO(5)-coherent state with fermionic realization, hence the coherence
property related to equation (1) originates in the closed SO(5) structure. (c) The above
calculation can be applied to the dipole interaction Hamiltonian of Leggett. There appears a
nontrivial consistency between the diagonalization of the microscopic form of HD by AAM
and the gap equation. (d) Finally, in contrast to the SO(5) unification of Zhang et al [8,9] we
attempt to find what price we have to pay in order to form an assumed unification involving
both the s- and p-wave superconductivities (as shown in [2]), instead of the claimed transition
between s-wave superconductivity and the AF phase shown in [8, 9].

(1) Observing the algebra defined in [2], if T0(k) is picked up, it becomes closed. Defining
S̄(k) = 1

2 [S(k) + S(−k)], Q(k) = 1
2 (S0(k) + S0(−k) − 2) it can be checked that the set

(Q(k), S̄(k), T (k), T †(k)) forms an SO(5) algebra

[Iab(k), Icd(k′)] = −iδ(k − k′)(δacIbd(k) + δbdIac(k) − δadIbc(k) − δbcIad(k))

where Iab(k) = −Iba(k)(a, b = 1, 2, 3, 4, 5) takes the form


0
− 1

2 (T †
x (k) + Tx(k)) 0

− 1
2 (T †

y (k) + Ty(k)) −S̄z(k) 0
− 1

2 (T †
z (k) + Tz(k)) S̄y(k) −S̄x(k) 0
Q(k) 1

2i (Tx(k) − T †
x (k)) 1

2i (Ty(k) − T †
y (k)) 1

2i (Tz(k) − T †
z (k)) 0


. (2)

The Hamiltonian equation (1) can then be written in the form

H =
∑

k

εk(Q(k) + 1) + 1
4

∑
k,k′

Vk′kT †(k) · T (k′). (3)

Note that the mean-field approximation is enough to obtain the gap equation since we work in
the equilibrium state. Using [10]

AB � A〈B〉 + 〈A〉B − 〈A〉〈B〉
equation (3) can be linearized with respect to SO(5) generators

Hmf =
∑

k

{H(k) − E∗(k)}

with

H(k) = εkQ(k) + ∆(k) · T †(k) + ∆∗(k) · T (k) (4)

E∗(k) = εk − ∆(k) · 〈T †(k)〉 (5)

where ∆(k) = 1
4

∑
k′ Vk′k〈T (k)〉 and 〈. . .〉 represents the average over both quantum states

and thermodynamics. We emphasized that the set % = {
i√
2
T3(k), −i√

2
T

†
3 (k), −Q(k)

}
i.e.{ − i

√
2πz, i

√
2π†

z , −Q
}

in [8,9] forms the quasi-spin % for pairs. % does not commute with

spin operators S(k) that give rise to T
†
±(k) and T±(k) which are beyond two SU(2) and the

total set forms SO(5). In order to perform the diagonalization of equation (4) we introduce the
unitary transformation such that W †(ξk)H(k)W(ξk) becomes diagonal for any k. Following
the general strategy [7] we introduce the SO(5)-coherent operator:

W(ξk) = exp{ξk[d(n) · T †(k)] − h.c.} (6)
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where ξk = rkeiλk , d(n) = (sin +k cos ,k, sin +k sin ,k, cos +k), +k and ,k are angulars
in spin space for a given momentum k. λk is a parameter to be determined using the
gap equation. Taking the commutation relations for SO(5) into account after lengthy but
elementary calculations we derive

W(ξk)−1H(k)W(ξk) = −EkQ(k) Ek =
√

ε2
k + |∆(k)|2 (7)

where

tan 2rk = |∆(k)|
εk

∆(k) = 1
4

∑
k′

Vk′k〈T (k)〉 = − 1
2 |∆(k)|eiλkd(n). (8)

The eigenstate is given by

|ξ〉 = ⊗k|ξk〉 |ξk〉 = W(ξk)|vac〉. (9)

At temperature T = 0, the vacuum state is |vac〉 = |0, 0〉k ≡ |nkα = 0, n−kα = 0〉. The
expectation value 〈T (k)〉 = 〈ξk|T (k)|ξk〉 = sin 2rkeiλkd(n) yields the well known gap
equation at T = 0:

∆(k) = −
∑
k′

Vk′k
∆(k′)
2Ek′

. (10)

To satisfy equation (10) we simply choose λk = λ = constant henceforth, for finite
temperature, making use of the double-time Green function we obtain 〈nkα〉 = 1

2 [1 −
εk

Ek
tanh( 1

2 βEk)] and 〈T (k)〉 = 〈ξk|T (k)|ξk〉 = sin 2rkeiλ tanh( 1
2 βEk)d(n) where β = 1

kT

and k is the Boltzmann constant. Therefore the gap equation reads

∆(k) = −
∑
k′

Vkk′
∆(k′)
2Ek′

tanh

(
1

2
βEk′

)
. (11)

The SO(5) coherent state |ξk〉 equation (9) gives

|ξk〉 = W(ξk)|0, 0〉 = cos2 rk|0, 0〉 − ei2λ sin2 rk| ↑↓, ↑↓〉
+

i

2
eiλ sin 2rk{cos +k(| ↑, ↓〉 + | ↓, ↑〉)

− sin +ke−i,k | ↑, ↑〉 + sin +kei,k | ↓, ↓〉}. (12)

Let us distinguish two cases: in the BW phase, to satisfy the gap equation it holds d(n) = n,
+k = θk and ,k = ψk that correspond intuitively to a Cooper pair with total angular
momentum J = 0 and has an isotropic gap, |∆(k)|eiλ = c-number. The wavefunction
of the BW solution in conventional notation reads

|ξk〉 = Ek + εk

2Ek

|0, 0〉 − ei2λ Ek − εk

2Ek

| ↑↓, ↑↓〉

−eiλ i|∆(k)|
2Ek

√
8π

3
{Y11| ↓, ↓〉 − 1√

2
Y10(| ↑, ↓〉 + | ↓, ↑〉) + Y1−1| ↑, ↑〉}.

(13)

In the AM case, there is another solution of the gap equation obtained by taking |∆(k)|ei(λ+ π
2 ) =

Y11 and sin +k = 0, it is the non-ESP state

|ξk〉 = Ek + εk

2Ek

|0, 0〉 + ei2λ Ek − εk

2Ek

| ↑↓, ↑↓〉 +
Y11

2Ek

(| ↑, ↓〉 + | ↓, ↑〉). (14)

However, the solution for cos +k = 0 appears only under an applied magnetic field. For
instance, when B = µBez, the Hamiltonian becomes

HB =
∑

k

H(k) − µB
∑

k

(
a+

k↑ak↑ − a+
k↓ak↓

)
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and

W †HBW = 1

2
Ek

(
1 +

µB

εk

)
(nk↓ + n−k↓) +

1

2
Ek

(
1 − µB

εk

)
(nk↑ + n−k↑) − Ek.

Through the double-time Green function we may calculate that the non-vanishing components
of ∆(k) are

1↑↑(k) = 1

4

∑
k′

Vkk′
|∆(k′)|

2Ek′
eiλei,k′ tanh

[
1

2
βEk′

(
1 − µB

εk′

)]

and

1↓↓(k) = 1

4

∑
k′

Vkk′
|1(k′)|

2Ek′
eiλe−i,k′ tanh

[
1

2
βEk′

(
1 +

µB

εk′

)]
.

The eigenstate is∼ Y11 (|↑↑〉−|↓↓〉). If we study s-superconductivity by AAM, then coherence
comes from the SU(2) coherent operators in [7]. The AAM is exactly the usual Bogoliubov
transformation.

(2) The dipole interaction was proposed to describe the spin dynamics for liquid 3He. The
computation in [2] is based on 〈T (k)〉 = ∑3

i=1 T α
i ni . However, in the microscopic-form of

the dipole interaction Hamiltonian

HD = 2πγ 2

3

∑
kk

Vkk′(T †(k) · T (k′) − 3q̂ · T †(k)q̂ · T (k′)) (15)

where q̂ is a unit vector along n−n′. The average formula shown in [2] can no longer be used,
since the operator cannot be expended by ni . However, the SO(5) AAM procedure works for
equation (15) with the redefinition 1i = ∑3

j=1(δij − 3q̂i q̂j )〈Tj 〉. Repeating the process in
(1) we find that ∆(k) satisfies the same gap equation (11) and the eigenstates take the same
form for given ∆(k) satisfying equation (11), i.e. equation (15) can be diagonalized with the
following relation instead of equation (8):
 1↑↑(k)√

21↑↓(k)

1↓↓(k)


 = 4πγ 2

3

∑
k′

Vk′k
{

1
2 I + 3

2 Dj=1(α = ψkk′ , β = 2ωkk′ , γ = π − ψkk′)
}

×




〈
1
2i T−(k′)

〉
〈

i√
2
Tz(k

′)
〉

〈
i
2 T+(k′)

〉


 (16)

where the Dj=1(α, β, γ ) is the Wigner rotation function with the Euler angles α, β and γ and
q̂ = q(sin ωkk′ cos ψkk′ , sin ωkk′ sin ψkk′ , cos ωkk′). The relations for ωkk′ , ψkk′ and α, β, γ

have been indicated in equation (16). The HD works well in spin dynamics, but the consistency
condition for the diagonalization of HD and the gap equation, to our knowledge, have not been
proved before. Now equation (8) is replaced by (16) for the Hamiltonian equation (15). This
means that all the discussion in (1) can be transplanted literally for ∆(k).

(3) It seems that T± (or ∼π± in [8, 9]) in SO(5) may give rise to the transition between
superconductivity and the AF state based on the argument given in [8, 9]. However, it is
not the case in the present model. This is not only because there is no SO(5) invariance
for H or HD , but also for deeper reasons. Observing the gap equation for Vkk′ ∼ P0

(constant) and Vkk′ ∼ P1 ∼ n · n′, the corresponding wavefunction 70 ∼ Y00χ00 and
71 ∼ equation (13) where χ00 is spin singlet. In our case, the generators of SO(5) work
only within p-superconductivity, i.e. not with s-superconductivity. If we assume there is a
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transition between 70 and 71, i.e. the form of the gap equation is preserved, but with different
potentials ∼ P0 and P1, their corresponding wavefunctions are written as follows:

70 ∼ Y00√
2

(
0 1

−1 0

)
71 ∼ 1√

3

(
Y1−1

−1√
2
Y10

−1√
2
Y10 Y11

)
= 1√

8π

(
k̂− −k̂z

−k̂z −k̂+

)
. (17)

The connection should be beyond Lie algebra. We find that such a ‘transition’ may be
performed through Yangian theory [11–13]. Actually,

k̂±J∓70 =
(

µ2 − µ1 +
h

2

)
Y1±1χ1∓1

k̂zJz70 = −1

2

(
µ2 − µ1 +

h

2

)
Y10χ10

(18)

where Jα = µ1Sα ⊗ 1 + µ21 ⊗ Sα − ih
4 εαβγ (Sβ ⊗ Sγ − Sγ ⊗ Sβ) (α, β, γ = 1, 2, 3) and Sα are

the spin operators. µ1 and µ2 are arbitrary constants allowed by Yangian representation theory
and play the crucial role in the Yangian [14] representation. [Sα, Jβ] = iεαβγ Jγ and Jγ obey
the nonlinear commutation relations [11–15]. The set {Sα, Jβ} forms the Yangian associated
with SU(2) denoted by Y (SU(2)). Note that Jα act on the quantum tensor space only. If the
set {S, J} satisfies the Yangian, so does J + ηS, where η is an arbitrary constant that is called
the translation of the Yangian. By taking an appropriate translation constant we have

(k̂ · J)70 =
√

3

2

(
µ2 − µ1 +

h

2

)
71 (k̂ · J)71 = 0. (19)

Yangian algebra is an infinite algebra. Therefore any attempt to unify the superconductivity
with different l-waves should be through infinite algebra. For a simply physical realization of
Y (SU(2)), see [15].

(4) In conclusion we believe that the AAM provides a useful approach to discuss physics
concerning pair-particles, especially for the nature of coherence and consistency between the
diagonalization of the given Hamiltonian and gap equation through the double-time Green
function. Further, this algebraic method may be extended to Yangian algebra that is natural to
describe the transition between different condensates.

This work is, in part, supported by the National Natural Science Foundation of China.
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